The term cyber-physical systems characterizes the integration of information and communication technologies (ICT) with their physical environment. This integration results in a huge potential for the development of intelligent systems in a large set of industrial sectors. The potential will be covered in the first part of the talk. Sectors comprise industrial automation (industry 4.0), traffic, consumer devices, the smart grid, the health sector, urban living and computer-based analysis in science and engineering. A multitude of goals can be supported in this way, e.g., the availability of higher standards of living, higher efficiency of many processes, the generation of knowledge and safety for the society. However, the realization of this integration implies manifold challenges.
Challenges covered in the second part of this talk include security, timing, safety, reliability, energy efficiency, interfacing, and the discovery of information in huge amounts of data. Also, the inherent multidisciplinarity poses challenges for knowledge acquisition and application. In the third and final part of the talk, we will present some of our contributions addressing these issues. These contributions techniques for improving the energy efficiency include an integration of a timing model into the code generation process, tradeoffs between timeliness and reliability, and approaches for education crossing boundaries of involved disciplines.
Connect